Merge remote-tracking branch 'origin/main'

This commit is contained in:
1808837298@qq.com
2025-03-11 14:55:56 +08:00
4 changed files with 113 additions and 2 deletions

View File

@@ -70,6 +70,12 @@ func (a *Adaptor) GetRequestURL(info *relaycommon.RelayInfo) (string, error) {
return fmt.Sprintf("%s/%s/models/%s:predict", info.BaseUrl, version, info.UpstreamModelName), nil
}
if strings.HasPrefix(info.UpstreamModelName, "text-embedding") ||
strings.HasPrefix(info.UpstreamModelName, "embedding") ||
strings.HasPrefix(info.UpstreamModelName, "gemini-embedding") {
return fmt.Sprintf("%s/%s/models/%s:embedContent", info.BaseUrl, version, info.UpstreamModelName), nil
}
action := "generateContent"
if info.IsStream {
action = "streamGenerateContent?alt=sse"
@@ -99,8 +105,37 @@ func (a *Adaptor) ConvertRerankRequest(c *gin.Context, relayMode int, request dt
}
func (a *Adaptor) ConvertEmbeddingRequest(c *gin.Context, info *relaycommon.RelayInfo, request dto.EmbeddingRequest) (any, error) {
//TODO implement me
return nil, errors.New("not implemented")
if request.Input == nil {
return nil, errors.New("input is required")
}
inputs := request.ParseInput()
if len(inputs) == 0 {
return nil, errors.New("input is empty")
}
// only process the first input
geminiRequest := GeminiEmbeddingRequest{
Content: GeminiChatContent{
Parts: []GeminiPart{
{
Text: inputs[0],
},
},
},
}
// set specific parameters for different models
// https://ai.google.dev/api/embeddings?hl=zh-cn#method:-models.embedcontent
switch info.UpstreamModelName {
case "text-embedding-004":
// except embedding-001 supports setting `OutputDimensionality`
if request.Dimensions > 0 {
geminiRequest.OutputDimensionality = request.Dimensions
}
}
return geminiRequest, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, info *relaycommon.RelayInfo, requestBody io.Reader) (any, error) {
@@ -112,6 +147,13 @@ func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, info *relaycom
return GeminiImageHandler(c, resp, info)
}
// check if the model is an embedding model
if strings.HasPrefix(info.UpstreamModelName, "text-embedding") ||
strings.HasPrefix(info.UpstreamModelName, "embedding") ||
strings.HasPrefix(info.UpstreamModelName, "gemini-embedding") {
return GeminiEmbeddingHandler(c, resp, info)
}
if info.IsStream {
err, usage = GeminiChatStreamHandler(c, resp, info)
} else {

View File

@@ -18,6 +18,10 @@ var ModelList = []string{
"gemini-2.0-flash-thinking-exp",
// imagen models
"imagen-3.0-generate-002",
// embedding models
"gemini-embedding-exp-03-07",
"text-embedding-004",
"embedding-001",
}
var SafetySettingList = []string{

View File

@@ -136,3 +136,19 @@ type GeminiImagePrediction struct {
RaiFilteredReason string `json:"raiFilteredReason,omitempty"`
SafetyAttributes any `json:"safetyAttributes,omitempty"`
}
// Embedding related structs
type GeminiEmbeddingRequest struct {
Content GeminiChatContent `json:"content"`
TaskType string `json:"taskType,omitempty"`
Title string `json:"title,omitempty"`
OutputDimensionality int `json:"outputDimensionality,omitempty"`
}
type GeminiEmbeddingResponse struct {
Embedding ContentEmbedding `json:"embedding"`
}
type ContentEmbedding struct {
Values []float64 `json:"values"`
}

View File

@@ -580,3 +580,52 @@ func GeminiChatHandler(c *gin.Context, resp *http.Response, info *relaycommon.Re
_, err = c.Writer.Write(jsonResponse)
return nil, &usage
}
func GeminiEmbeddingHandler(c *gin.Context, resp *http.Response, info *relaycommon.RelayInfo) (usage any, err *dto.OpenAIErrorWithStatusCode) {
responseBody, readErr := io.ReadAll(resp.Body)
if readErr != nil {
return nil, service.OpenAIErrorWrapper(readErr, "read_response_body_failed", http.StatusInternalServerError)
}
_ = resp.Body.Close()
var geminiResponse GeminiEmbeddingResponse
if jsonErr := json.Unmarshal(responseBody, &geminiResponse); jsonErr != nil {
return nil, service.OpenAIErrorWrapper(jsonErr, "unmarshal_response_body_failed", http.StatusInternalServerError)
}
// convert to openai format response
openAIResponse := dto.OpenAIEmbeddingResponse{
Object: "list",
Data: []dto.OpenAIEmbeddingResponseItem{
{
Object: "embedding",
Embedding: geminiResponse.Embedding.Values,
Index: 0,
},
},
Model: info.UpstreamModelName,
}
// calculate usage
// https://ai.google.dev/gemini-api/docs/pricing?hl=zh-cn#text-embedding-004
// Google has not yet clarified how embedding models will be billed
// refer to openai billing method to use input tokens billing
// https://platform.openai.com/docs/guides/embeddings#what-are-embeddings
usage = &dto.Usage{
PromptTokens: info.PromptTokens,
CompletionTokens: 0,
TotalTokens: info.PromptTokens,
}
openAIResponse.Usage = *usage.(*dto.Usage)
jsonResponse, jsonErr := json.Marshal(openAIResponse)
if jsonErr != nil {
return nil, service.OpenAIErrorWrapper(jsonErr, "marshal_response_failed", http.StatusInternalServerError)
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, _ = c.Writer.Write(jsonResponse)
return usage, nil
}