276 lines
8.4 KiB
Go
276 lines
8.4 KiB
Go
package gemini
|
||
|
||
import (
|
||
"encoding/json"
|
||
"errors"
|
||
"fmt"
|
||
"io"
|
||
"net/http"
|
||
"one-api/common"
|
||
"one-api/dto"
|
||
"one-api/relay/channel"
|
||
"one-api/relay/channel/openai"
|
||
relaycommon "one-api/relay/common"
|
||
"one-api/relay/constant"
|
||
"one-api/setting/model_setting"
|
||
"one-api/types"
|
||
"strings"
|
||
|
||
"github.com/gin-gonic/gin"
|
||
)
|
||
|
||
type Adaptor struct {
|
||
}
|
||
|
||
func (a *Adaptor) ConvertClaudeRequest(c *gin.Context, info *relaycommon.RelayInfo, req *dto.ClaudeRequest) (any, error) {
|
||
adaptor := openai.Adaptor{}
|
||
oaiReq, err := adaptor.ConvertClaudeRequest(c, info, req)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
return a.ConvertOpenAIRequest(c, info, oaiReq.(*dto.GeneralOpenAIRequest))
|
||
}
|
||
|
||
func (a *Adaptor) ConvertAudioRequest(c *gin.Context, info *relaycommon.RelayInfo, request dto.AudioRequest) (io.Reader, error) {
|
||
//TODO implement me
|
||
return nil, errors.New("not implemented")
|
||
}
|
||
|
||
func (a *Adaptor) ConvertImageRequest(c *gin.Context, info *relaycommon.RelayInfo, request dto.ImageRequest) (any, error) {
|
||
if !strings.HasPrefix(info.UpstreamModelName, "imagen") {
|
||
return nil, errors.New("not supported model for image generation")
|
||
}
|
||
|
||
// convert size to aspect ratio
|
||
aspectRatio := "1:1" // default aspect ratio
|
||
switch request.Size {
|
||
case "1024x1024":
|
||
aspectRatio = "1:1"
|
||
case "1024x1792":
|
||
aspectRatio = "9:16"
|
||
case "1792x1024":
|
||
aspectRatio = "16:9"
|
||
}
|
||
|
||
// build gemini imagen request
|
||
geminiRequest := GeminiImageRequest{
|
||
Instances: []GeminiImageInstance{
|
||
{
|
||
Prompt: request.Prompt,
|
||
},
|
||
},
|
||
Parameters: GeminiImageParameters{
|
||
SampleCount: request.N,
|
||
AspectRatio: aspectRatio,
|
||
PersonGeneration: "allow_adult", // default allow adult
|
||
},
|
||
}
|
||
|
||
return geminiRequest, nil
|
||
}
|
||
|
||
func (a *Adaptor) Init(info *relaycommon.RelayInfo) {
|
||
|
||
}
|
||
|
||
func (a *Adaptor) GetRequestURL(info *relaycommon.RelayInfo) (string, error) {
|
||
|
||
if model_setting.GetGeminiSettings().ThinkingAdapterEnabled {
|
||
// 新增逻辑:处理 -thinking-<budget> 格式
|
||
if strings.Contains(info.UpstreamModelName, "-thinking-") {
|
||
parts := strings.Split(info.UpstreamModelName, "-thinking-")
|
||
info.UpstreamModelName = parts[0]
|
||
} else if strings.HasSuffix(info.UpstreamModelName, "-thinking") { // 旧的适配
|
||
info.UpstreamModelName = strings.TrimSuffix(info.UpstreamModelName, "-thinking")
|
||
} else if strings.HasSuffix(info.UpstreamModelName, "-nothinking") {
|
||
info.UpstreamModelName = strings.TrimSuffix(info.UpstreamModelName, "-nothinking")
|
||
}
|
||
}
|
||
|
||
version := model_setting.GetGeminiVersionSetting(info.UpstreamModelName)
|
||
|
||
if strings.HasPrefix(info.UpstreamModelName, "imagen") {
|
||
return fmt.Sprintf("%s/%s/models/%s:predict", info.BaseUrl, version, info.UpstreamModelName), nil
|
||
}
|
||
|
||
if strings.HasPrefix(info.UpstreamModelName, "text-embedding") ||
|
||
strings.HasPrefix(info.UpstreamModelName, "embedding") ||
|
||
strings.HasPrefix(info.UpstreamModelName, "gemini-embedding") {
|
||
return fmt.Sprintf("%s/%s/models/%s:embedContent", info.BaseUrl, version, info.UpstreamModelName), nil
|
||
}
|
||
|
||
action := "generateContent"
|
||
if info.IsStream {
|
||
action = "streamGenerateContent?alt=sse"
|
||
}
|
||
return fmt.Sprintf("%s/%s/models/%s:%s", info.BaseUrl, version, info.UpstreamModelName, action), nil
|
||
}
|
||
|
||
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Header, info *relaycommon.RelayInfo) error {
|
||
channel.SetupApiRequestHeader(info, c, req)
|
||
req.Set("x-goog-api-key", info.ApiKey)
|
||
return nil
|
||
}
|
||
|
||
func (a *Adaptor) ConvertOpenAIRequest(c *gin.Context, info *relaycommon.RelayInfo, request *dto.GeneralOpenAIRequest) (any, error) {
|
||
if request == nil {
|
||
return nil, errors.New("request is nil")
|
||
}
|
||
|
||
geminiRequest, err := CovertGemini2OpenAI(*request, info)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
|
||
return geminiRequest, nil
|
||
}
|
||
|
||
func (a *Adaptor) ConvertRerankRequest(c *gin.Context, relayMode int, request dto.RerankRequest) (any, error) {
|
||
return nil, nil
|
||
}
|
||
|
||
func (a *Adaptor) ConvertEmbeddingRequest(c *gin.Context, info *relaycommon.RelayInfo, request dto.EmbeddingRequest) (any, error) {
|
||
if request.Input == nil {
|
||
return nil, errors.New("input is required")
|
||
}
|
||
|
||
inputs := request.ParseInput()
|
||
if len(inputs) == 0 {
|
||
return nil, errors.New("input is empty")
|
||
}
|
||
|
||
// only process the first input
|
||
geminiRequest := GeminiEmbeddingRequest{
|
||
Content: GeminiChatContent{
|
||
Parts: []GeminiPart{
|
||
{
|
||
Text: inputs[0],
|
||
},
|
||
},
|
||
},
|
||
}
|
||
|
||
// set specific parameters for different models
|
||
// https://ai.google.dev/api/embeddings?hl=zh-cn#method:-models.embedcontent
|
||
switch info.UpstreamModelName {
|
||
case "text-embedding-004":
|
||
// except embedding-001 supports setting `OutputDimensionality`
|
||
if request.Dimensions > 0 {
|
||
geminiRequest.OutputDimensionality = request.Dimensions
|
||
}
|
||
}
|
||
|
||
return geminiRequest, nil
|
||
}
|
||
|
||
func (a *Adaptor) ConvertOpenAIResponsesRequest(c *gin.Context, info *relaycommon.RelayInfo, request dto.OpenAIResponsesRequest) (any, error) {
|
||
// TODO implement me
|
||
return nil, errors.New("not implemented")
|
||
}
|
||
|
||
func (a *Adaptor) DoRequest(c *gin.Context, info *relaycommon.RelayInfo, requestBody io.Reader) (any, error) {
|
||
return channel.DoApiRequest(a, c, info, requestBody)
|
||
}
|
||
|
||
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, info *relaycommon.RelayInfo) (usage any, err *types.NewAPIError) {
|
||
if info.RelayMode == constant.RelayModeGemini {
|
||
if info.IsStream {
|
||
return GeminiTextGenerationStreamHandler(c, info, resp)
|
||
} else {
|
||
return GeminiTextGenerationHandler(c, info, resp)
|
||
}
|
||
}
|
||
|
||
if strings.HasPrefix(info.UpstreamModelName, "imagen") {
|
||
return GeminiImageHandler(c, info, resp)
|
||
}
|
||
|
||
// check if the model is an embedding model
|
||
if strings.HasPrefix(info.UpstreamModelName, "text-embedding") ||
|
||
strings.HasPrefix(info.UpstreamModelName, "embedding") ||
|
||
strings.HasPrefix(info.UpstreamModelName, "gemini-embedding") {
|
||
return GeminiEmbeddingHandler(c, info, resp)
|
||
}
|
||
|
||
if info.IsStream {
|
||
return GeminiChatStreamHandler(c, info, resp)
|
||
} else {
|
||
return GeminiChatHandler(c, info, resp)
|
||
}
|
||
|
||
//if usage.(*dto.Usage).CompletionTokenDetails.ReasoningTokens > 100 {
|
||
// // 没有请求-thinking的情况下,产生思考token,则按照思考模型计费
|
||
// if !strings.HasSuffix(info.OriginModelName, "-thinking") &&
|
||
// !strings.HasSuffix(info.OriginModelName, "-nothinking") {
|
||
// thinkingModelName := info.OriginModelName + "-thinking"
|
||
// if operation_setting.SelfUseModeEnabled || helper.ContainPriceOrRatio(thinkingModelName) {
|
||
// info.OriginModelName = thinkingModelName
|
||
// }
|
||
// }
|
||
//}
|
||
|
||
return nil, types.NewError(errors.New("not implemented"), types.ErrorCodeBadResponseBody)
|
||
}
|
||
|
||
func GeminiImageHandler(c *gin.Context, info *relaycommon.RelayInfo, resp *http.Response) (*dto.Usage, *types.NewAPIError) {
|
||
responseBody, readErr := io.ReadAll(resp.Body)
|
||
if readErr != nil {
|
||
return nil, types.NewError(readErr, types.ErrorCodeBadResponseBody)
|
||
}
|
||
_ = resp.Body.Close()
|
||
|
||
var geminiResponse GeminiImageResponse
|
||
if jsonErr := json.Unmarshal(responseBody, &geminiResponse); jsonErr != nil {
|
||
return nil, types.NewError(jsonErr, types.ErrorCodeBadResponseBody)
|
||
}
|
||
|
||
if len(geminiResponse.Predictions) == 0 {
|
||
return nil, types.NewError(errors.New("no images generated"), types.ErrorCodeBadResponseBody)
|
||
}
|
||
|
||
// convert to openai format response
|
||
openAIResponse := dto.ImageResponse{
|
||
Created: common.GetTimestamp(),
|
||
Data: make([]dto.ImageData, 0, len(geminiResponse.Predictions)),
|
||
}
|
||
|
||
for _, prediction := range geminiResponse.Predictions {
|
||
if prediction.RaiFilteredReason != "" {
|
||
continue // skip filtered image
|
||
}
|
||
openAIResponse.Data = append(openAIResponse.Data, dto.ImageData{
|
||
B64Json: prediction.BytesBase64Encoded,
|
||
})
|
||
}
|
||
|
||
jsonResponse, jsonErr := json.Marshal(openAIResponse)
|
||
if jsonErr != nil {
|
||
return nil, types.NewError(jsonErr, types.ErrorCodeBadResponseBody)
|
||
}
|
||
|
||
c.Writer.Header().Set("Content-Type", "application/json")
|
||
c.Writer.WriteHeader(resp.StatusCode)
|
||
_, _ = c.Writer.Write(jsonResponse)
|
||
|
||
// https://github.com/google-gemini/cookbook/blob/719a27d752aac33f39de18a8d3cb42a70874917e/quickstarts/Counting_Tokens.ipynb
|
||
// each image has fixed 258 tokens
|
||
const imageTokens = 258
|
||
generatedImages := len(openAIResponse.Data)
|
||
|
||
usage := &dto.Usage{
|
||
PromptTokens: imageTokens * generatedImages, // each generated image has fixed 258 tokens
|
||
CompletionTokens: 0, // image generation does not calculate completion tokens
|
||
TotalTokens: imageTokens * generatedImages,
|
||
}
|
||
|
||
return usage, nil
|
||
}
|
||
|
||
func (a *Adaptor) GetModelList() []string {
|
||
return ModelList
|
||
}
|
||
|
||
func (a *Adaptor) GetChannelName() string {
|
||
return ChannelName
|
||
}
|