Files
new-api/relay/channel/gemini/adaptor.go

232 lines
6.8 KiB
Go

package gemini
import (
"encoding/json"
"errors"
"fmt"
"io"
"net/http"
"one-api/common"
"one-api/dto"
"one-api/relay/channel"
relaycommon "one-api/relay/common"
"one-api/service"
"one-api/setting/model_setting"
"strings"
"github.com/gin-gonic/gin"
)
type Adaptor struct {
}
func (a *Adaptor) ConvertClaudeRequest(*gin.Context, *relaycommon.RelayInfo, *dto.ClaudeRequest) (any, error) {
//TODO implement me
panic("implement me")
return nil, nil
}
func (a *Adaptor) ConvertAudioRequest(c *gin.Context, info *relaycommon.RelayInfo, request dto.AudioRequest) (io.Reader, error) {
//TODO implement me
return nil, errors.New("not implemented")
}
func (a *Adaptor) ConvertImageRequest(c *gin.Context, info *relaycommon.RelayInfo, request dto.ImageRequest) (any, error) {
if !strings.HasPrefix(info.UpstreamModelName, "imagen") {
return nil, errors.New("not supported model for image generation")
}
// convert size to aspect ratio
aspectRatio := "1:1" // default aspect ratio
switch request.Size {
case "1024x1024":
aspectRatio = "1:1"
case "1024x1792":
aspectRatio = "9:16"
case "1792x1024":
aspectRatio = "16:9"
}
// build gemini imagen request
geminiRequest := GeminiImageRequest{
Instances: []GeminiImageInstance{
{
Prompt: request.Prompt,
},
},
Parameters: GeminiImageParameters{
SampleCount: request.N,
AspectRatio: aspectRatio,
PersonGeneration: "allow_adult", // default allow adult
},
}
return geminiRequest, nil
}
func (a *Adaptor) Init(info *relaycommon.RelayInfo) {
}
func (a *Adaptor) GetRequestURL(info *relaycommon.RelayInfo) (string, error) {
version := model_setting.GetGeminiVersionSetting(info.UpstreamModelName)
if strings.HasPrefix(info.UpstreamModelName, "imagen") {
return fmt.Sprintf("%s/%s/models/%s:predict", info.BaseUrl, version, info.UpstreamModelName), nil
}
if strings.HasPrefix(info.UpstreamModelName, "text-embedding") ||
strings.HasPrefix(info.UpstreamModelName, "embedding") ||
strings.HasPrefix(info.UpstreamModelName, "gemini-embedding") {
return fmt.Sprintf("%s/%s/models/%s:embedContent", info.BaseUrl, version, info.UpstreamModelName), nil
}
action := "generateContent"
if info.IsStream {
action = "streamGenerateContent?alt=sse"
}
return fmt.Sprintf("%s/%s/models/%s:%s", info.BaseUrl, version, info.UpstreamModelName, action), nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Header, info *relaycommon.RelayInfo) error {
channel.SetupApiRequestHeader(info, c, req)
req.Set("x-goog-api-key", info.ApiKey)
return nil
}
func (a *Adaptor) ConvertOpenAIRequest(c *gin.Context, info *relaycommon.RelayInfo, request *dto.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
ai, err := CovertGemini2OpenAI(*request)
if err != nil {
return nil, err
}
return ai, nil
}
func (a *Adaptor) ConvertRerankRequest(c *gin.Context, relayMode int, request dto.RerankRequest) (any, error) {
return nil, nil
}
func (a *Adaptor) ConvertEmbeddingRequest(c *gin.Context, info *relaycommon.RelayInfo, request dto.EmbeddingRequest) (any, error) {
if request.Input == nil {
return nil, errors.New("input is required")
}
inputs := request.ParseInput()
if len(inputs) == 0 {
return nil, errors.New("input is empty")
}
// only process the first input
geminiRequest := GeminiEmbeddingRequest{
Content: GeminiChatContent{
Parts: []GeminiPart{
{
Text: inputs[0],
},
},
},
}
// set specific parameters for different models
// https://ai.google.dev/api/embeddings?hl=zh-cn#method:-models.embedcontent
switch info.UpstreamModelName {
case "text-embedding-004":
// except embedding-001 supports setting `OutputDimensionality`
if request.Dimensions > 0 {
geminiRequest.OutputDimensionality = request.Dimensions
}
}
return geminiRequest, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, info *relaycommon.RelayInfo, requestBody io.Reader) (any, error) {
return channel.DoApiRequest(a, c, info, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, info *relaycommon.RelayInfo) (usage any, err *dto.OpenAIErrorWithStatusCode) {
if strings.HasPrefix(info.UpstreamModelName, "imagen") {
return GeminiImageHandler(c, resp, info)
}
// check if the model is an embedding model
if strings.HasPrefix(info.UpstreamModelName, "text-embedding") ||
strings.HasPrefix(info.UpstreamModelName, "embedding") ||
strings.HasPrefix(info.UpstreamModelName, "gemini-embedding") {
return GeminiEmbeddingHandler(c, resp, info)
}
if info.IsStream {
err, usage = GeminiChatStreamHandler(c, resp, info)
} else {
err, usage = GeminiChatHandler(c, resp, info)
}
return
}
func GeminiImageHandler(c *gin.Context, resp *http.Response, info *relaycommon.RelayInfo) (usage any, err *dto.OpenAIErrorWithStatusCode) {
responseBody, readErr := io.ReadAll(resp.Body)
if readErr != nil {
return nil, service.OpenAIErrorWrapper(readErr, "read_response_body_failed", http.StatusInternalServerError)
}
_ = resp.Body.Close()
var geminiResponse GeminiImageResponse
if jsonErr := json.Unmarshal(responseBody, &geminiResponse); jsonErr != nil {
return nil, service.OpenAIErrorWrapper(jsonErr, "unmarshal_response_body_failed", http.StatusInternalServerError)
}
if len(geminiResponse.Predictions) == 0 {
return nil, service.OpenAIErrorWrapper(errors.New("no images generated"), "no_images", http.StatusBadRequest)
}
// convert to openai format response
openAIResponse := dto.ImageResponse{
Created: common.GetTimestamp(),
Data: make([]dto.ImageData, 0, len(geminiResponse.Predictions)),
}
for _, prediction := range geminiResponse.Predictions {
if prediction.RaiFilteredReason != "" {
continue // skip filtered image
}
openAIResponse.Data = append(openAIResponse.Data, dto.ImageData{
B64Json: prediction.BytesBase64Encoded,
})
}
jsonResponse, jsonErr := json.Marshal(openAIResponse)
if jsonErr != nil {
return nil, service.OpenAIErrorWrapper(jsonErr, "marshal_response_failed", http.StatusInternalServerError)
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, _ = c.Writer.Write(jsonResponse)
// https://github.com/google-gemini/cookbook/blob/719a27d752aac33f39de18a8d3cb42a70874917e/quickstarts/Counting_Tokens.ipynb
// each image has fixed 258 tokens
const imageTokens = 258
generatedImages := len(openAIResponse.Data)
usage = &dto.Usage{
PromptTokens: imageTokens * generatedImages, // each generated image has fixed 258 tokens
CompletionTokens: 0, // image generation does not calculate completion tokens
TotalTokens: imageTokens * generatedImages,
}
return usage, nil
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return ChannelName
}