547 lines
20 KiB
Go
547 lines
20 KiB
Go
package relay
|
||
|
||
import (
|
||
"bytes"
|
||
"encoding/json"
|
||
"errors"
|
||
"fmt"
|
||
"io"
|
||
"math"
|
||
"net/http"
|
||
"one-api/common"
|
||
"one-api/constant"
|
||
"one-api/dto"
|
||
"one-api/model"
|
||
relaycommon "one-api/relay/common"
|
||
relayconstant "one-api/relay/constant"
|
||
"one-api/relay/helper"
|
||
"one-api/service"
|
||
"one-api/setting"
|
||
"one-api/setting/model_setting"
|
||
"one-api/setting/operation_setting"
|
||
"strings"
|
||
"time"
|
||
|
||
"github.com/bytedance/gopkg/util/gopool"
|
||
"github.com/shopspring/decimal"
|
||
|
||
"github.com/gin-gonic/gin"
|
||
)
|
||
|
||
func getAndValidateTextRequest(c *gin.Context, relayInfo *relaycommon.RelayInfo) (*dto.GeneralOpenAIRequest, error) {
|
||
textRequest := &dto.GeneralOpenAIRequest{}
|
||
err := common.UnmarshalBodyReusable(c, textRequest)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
if relayInfo.RelayMode == relayconstant.RelayModeModerations && textRequest.Model == "" {
|
||
textRequest.Model = "text-moderation-latest"
|
||
}
|
||
if relayInfo.RelayMode == relayconstant.RelayModeEmbeddings && textRequest.Model == "" {
|
||
textRequest.Model = c.Param("model")
|
||
}
|
||
|
||
if textRequest.MaxTokens > math.MaxInt32/2 {
|
||
return nil, errors.New("max_tokens is invalid")
|
||
}
|
||
if textRequest.Model == "" {
|
||
return nil, errors.New("model is required")
|
||
}
|
||
if textRequest.WebSearchOptions != nil {
|
||
if textRequest.WebSearchOptions.SearchContextSize != "" {
|
||
validSizes := map[string]bool{
|
||
"high": true,
|
||
"medium": true,
|
||
"low": true,
|
||
}
|
||
if !validSizes[textRequest.WebSearchOptions.SearchContextSize] {
|
||
return nil, errors.New("invalid search_context_size, must be one of: high, medium, low")
|
||
}
|
||
} else {
|
||
textRequest.WebSearchOptions.SearchContextSize = "medium"
|
||
}
|
||
}
|
||
switch relayInfo.RelayMode {
|
||
case relayconstant.RelayModeCompletions:
|
||
if textRequest.Prompt == "" {
|
||
return nil, errors.New("field prompt is required")
|
||
}
|
||
case relayconstant.RelayModeChatCompletions:
|
||
if len(textRequest.Messages) == 0 {
|
||
return nil, errors.New("field messages is required")
|
||
}
|
||
case relayconstant.RelayModeEmbeddings:
|
||
case relayconstant.RelayModeModerations:
|
||
if textRequest.Input == nil || textRequest.Input == "" {
|
||
return nil, errors.New("field input is required")
|
||
}
|
||
case relayconstant.RelayModeEdits:
|
||
if textRequest.Instruction == "" {
|
||
return nil, errors.New("field instruction is required")
|
||
}
|
||
}
|
||
relayInfo.IsStream = textRequest.Stream
|
||
return textRequest, nil
|
||
}
|
||
|
||
func TextHelper(c *gin.Context) (openaiErr *dto.OpenAIErrorWithStatusCode) {
|
||
|
||
relayInfo := relaycommon.GenRelayInfo(c)
|
||
|
||
// get & validate textRequest 获取并验证文本请求
|
||
textRequest, err := getAndValidateTextRequest(c, relayInfo)
|
||
if textRequest.WebSearchOptions != nil {
|
||
c.Set("chat_completion_web_search_context_size", textRequest.WebSearchOptions.SearchContextSize)
|
||
}
|
||
|
||
if err != nil {
|
||
common.LogError(c, fmt.Sprintf("getAndValidateTextRequest failed: %s", err.Error()))
|
||
return service.OpenAIErrorWrapperLocal(err, "invalid_text_request", http.StatusBadRequest)
|
||
}
|
||
|
||
if setting.ShouldCheckPromptSensitive() {
|
||
words, err := checkRequestSensitive(textRequest, relayInfo)
|
||
if err != nil {
|
||
common.LogWarn(c, fmt.Sprintf("user sensitive words detected: %s", strings.Join(words, ", ")))
|
||
return service.OpenAIErrorWrapperLocal(err, "sensitive_words_detected", http.StatusBadRequest)
|
||
}
|
||
}
|
||
|
||
err = helper.ModelMappedHelper(c, relayInfo)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapperLocal(err, "model_mapped_error", http.StatusInternalServerError)
|
||
}
|
||
|
||
textRequest.Model = relayInfo.UpstreamModelName
|
||
|
||
// 获取 promptTokens,如果上下文中已经存在,则直接使用
|
||
var promptTokens int
|
||
if value, exists := c.Get("prompt_tokens"); exists {
|
||
promptTokens = value.(int)
|
||
relayInfo.PromptTokens = promptTokens
|
||
} else {
|
||
promptTokens, err = getPromptTokens(textRequest, relayInfo)
|
||
// count messages token error 计算promptTokens错误
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "count_token_messages_failed", http.StatusInternalServerError)
|
||
}
|
||
c.Set("prompt_tokens", promptTokens)
|
||
}
|
||
|
||
priceData, err := helper.ModelPriceHelper(c, relayInfo, promptTokens, int(math.Max(float64(textRequest.MaxTokens), float64(textRequest.MaxCompletionTokens))))
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapperLocal(err, "model_price_error", http.StatusInternalServerError)
|
||
}
|
||
|
||
// pre-consume quota 预消耗配额
|
||
preConsumedQuota, userQuota, openaiErr := preConsumeQuota(c, priceData.ShouldPreConsumedQuota, relayInfo)
|
||
if openaiErr != nil {
|
||
return openaiErr
|
||
}
|
||
defer func() {
|
||
if openaiErr != nil {
|
||
returnPreConsumedQuota(c, relayInfo, userQuota, preConsumedQuota)
|
||
}
|
||
}()
|
||
includeUsage := false
|
||
// 判断用户是否需要返回使用情况
|
||
if textRequest.StreamOptions != nil && textRequest.StreamOptions.IncludeUsage {
|
||
includeUsage = true
|
||
}
|
||
|
||
// 如果不支持StreamOptions,将StreamOptions设置为nil
|
||
if !relayInfo.SupportStreamOptions || !textRequest.Stream {
|
||
textRequest.StreamOptions = nil
|
||
} else {
|
||
// 如果支持StreamOptions,且请求中没有设置StreamOptions,根据配置文件设置StreamOptions
|
||
if constant.ForceStreamOption {
|
||
textRequest.StreamOptions = &dto.StreamOptions{
|
||
IncludeUsage: true,
|
||
}
|
||
}
|
||
}
|
||
|
||
if includeUsage {
|
||
relayInfo.ShouldIncludeUsage = true
|
||
}
|
||
|
||
adaptor := GetAdaptor(relayInfo.ApiType)
|
||
if adaptor == nil {
|
||
return service.OpenAIErrorWrapperLocal(fmt.Errorf("invalid api type: %d", relayInfo.ApiType), "invalid_api_type", http.StatusBadRequest)
|
||
}
|
||
adaptor.Init(relayInfo)
|
||
var requestBody io.Reader
|
||
|
||
if model_setting.GetGlobalSettings().PassThroughRequestEnabled {
|
||
body, err := common.GetRequestBody(c)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapperLocal(err, "get_request_body_failed", http.StatusInternalServerError)
|
||
}
|
||
requestBody = bytes.NewBuffer(body)
|
||
} else {
|
||
convertedRequest, err := adaptor.ConvertOpenAIRequest(c, relayInfo, textRequest)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapperLocal(err, "convert_request_failed", http.StatusInternalServerError)
|
||
}
|
||
jsonData, err := json.Marshal(convertedRequest)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapperLocal(err, "json_marshal_failed", http.StatusInternalServerError)
|
||
}
|
||
|
||
// apply param override
|
||
if len(relayInfo.ParamOverride) > 0 {
|
||
reqMap := make(map[string]interface{})
|
||
err = json.Unmarshal(jsonData, &reqMap)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapperLocal(err, "param_override_unmarshal_failed", http.StatusInternalServerError)
|
||
}
|
||
for key, value := range relayInfo.ParamOverride {
|
||
reqMap[key] = value
|
||
}
|
||
jsonData, err = json.Marshal(reqMap)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapperLocal(err, "param_override_marshal_failed", http.StatusInternalServerError)
|
||
}
|
||
}
|
||
|
||
if common.DebugEnabled {
|
||
println("requestBody: ", string(jsonData))
|
||
}
|
||
requestBody = bytes.NewBuffer(jsonData)
|
||
}
|
||
|
||
var httpResp *http.Response
|
||
resp, err := adaptor.DoRequest(c, relayInfo, requestBody)
|
||
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "do_request_failed", http.StatusInternalServerError)
|
||
}
|
||
|
||
statusCodeMappingStr := c.GetString("status_code_mapping")
|
||
|
||
if resp != nil {
|
||
httpResp = resp.(*http.Response)
|
||
relayInfo.IsStream = relayInfo.IsStream || strings.HasPrefix(httpResp.Header.Get("Content-Type"), "text/event-stream")
|
||
if httpResp.StatusCode != http.StatusOK {
|
||
openaiErr = service.RelayErrorHandler(httpResp, false)
|
||
// reset status code 重置状态码
|
||
service.ResetStatusCode(openaiErr, statusCodeMappingStr)
|
||
return openaiErr
|
||
}
|
||
}
|
||
|
||
usage, openaiErr := adaptor.DoResponse(c, httpResp, relayInfo)
|
||
if openaiErr != nil {
|
||
// reset status code 重置状态码
|
||
service.ResetStatusCode(openaiErr, statusCodeMappingStr)
|
||
return openaiErr
|
||
}
|
||
|
||
if strings.HasPrefix(relayInfo.OriginModelName, "gpt-4o-audio") {
|
||
service.PostAudioConsumeQuota(c, relayInfo, usage.(*dto.Usage), preConsumedQuota, userQuota, priceData, "")
|
||
} else {
|
||
postConsumeQuota(c, relayInfo, usage.(*dto.Usage), preConsumedQuota, userQuota, priceData, "")
|
||
}
|
||
return nil
|
||
}
|
||
|
||
func getPromptTokens(textRequest *dto.GeneralOpenAIRequest, info *relaycommon.RelayInfo) (int, error) {
|
||
var promptTokens int
|
||
var err error
|
||
switch info.RelayMode {
|
||
case relayconstant.RelayModeChatCompletions:
|
||
promptTokens, err = service.CountTokenChatRequest(info, *textRequest)
|
||
case relayconstant.RelayModeCompletions:
|
||
promptTokens, err = service.CountTokenInput(textRequest.Prompt, textRequest.Model)
|
||
case relayconstant.RelayModeModerations:
|
||
promptTokens, err = service.CountTokenInput(textRequest.Input, textRequest.Model)
|
||
case relayconstant.RelayModeEmbeddings:
|
||
promptTokens, err = service.CountTokenInput(textRequest.Input, textRequest.Model)
|
||
default:
|
||
err = errors.New("unknown relay mode")
|
||
promptTokens = 0
|
||
}
|
||
info.PromptTokens = promptTokens
|
||
return promptTokens, err
|
||
}
|
||
|
||
func checkRequestSensitive(textRequest *dto.GeneralOpenAIRequest, info *relaycommon.RelayInfo) ([]string, error) {
|
||
var err error
|
||
var words []string
|
||
switch info.RelayMode {
|
||
case relayconstant.RelayModeChatCompletions:
|
||
words, err = service.CheckSensitiveMessages(textRequest.Messages)
|
||
case relayconstant.RelayModeCompletions:
|
||
words, err = service.CheckSensitiveInput(textRequest.Prompt)
|
||
case relayconstant.RelayModeModerations:
|
||
words, err = service.CheckSensitiveInput(textRequest.Input)
|
||
case relayconstant.RelayModeEmbeddings:
|
||
words, err = service.CheckSensitiveInput(textRequest.Input)
|
||
}
|
||
return words, err
|
||
}
|
||
|
||
// 预扣费并返回用户剩余配额
|
||
func preConsumeQuota(c *gin.Context, preConsumedQuota int, relayInfo *relaycommon.RelayInfo) (int, int, *dto.OpenAIErrorWithStatusCode) {
|
||
userQuota, err := model.GetUserQuota(relayInfo.UserId, false)
|
||
if err != nil {
|
||
return 0, 0, service.OpenAIErrorWrapperLocal(err, "get_user_quota_failed", http.StatusInternalServerError)
|
||
}
|
||
if userQuota <= 0 {
|
||
return 0, 0, service.OpenAIErrorWrapperLocal(errors.New("user quota is not enough"), "insufficient_user_quota", http.StatusForbidden)
|
||
}
|
||
if userQuota-preConsumedQuota < 0 {
|
||
return 0, 0, service.OpenAIErrorWrapperLocal(fmt.Errorf("chat pre-consumed quota failed, user quota: %s, need quota: %s", common.FormatQuota(userQuota), common.FormatQuota(preConsumedQuota)), "insufficient_user_quota", http.StatusForbidden)
|
||
}
|
||
relayInfo.UserQuota = userQuota
|
||
if userQuota > 100*preConsumedQuota {
|
||
// 用户额度充足,判断令牌额度是否充足
|
||
if !relayInfo.TokenUnlimited {
|
||
// 非无限令牌,判断令牌额度是否充足
|
||
tokenQuota := c.GetInt("token_quota")
|
||
if tokenQuota > 100*preConsumedQuota {
|
||
// 令牌额度充足,信任令牌
|
||
preConsumedQuota = 0
|
||
common.LogInfo(c, fmt.Sprintf("user %d quota %s and token %d quota %d are enough, trusted and no need to pre-consume", relayInfo.UserId, common.FormatQuota(userQuota), relayInfo.TokenId, tokenQuota))
|
||
}
|
||
} else {
|
||
// in this case, we do not pre-consume quota
|
||
// because the user has enough quota
|
||
preConsumedQuota = 0
|
||
common.LogInfo(c, fmt.Sprintf("user %d with unlimited token has enough quota %s, trusted and no need to pre-consume", relayInfo.UserId, common.FormatQuota(userQuota)))
|
||
}
|
||
}
|
||
|
||
if preConsumedQuota > 0 {
|
||
err := service.PreConsumeTokenQuota(relayInfo, preConsumedQuota)
|
||
if err != nil {
|
||
return 0, 0, service.OpenAIErrorWrapperLocal(err, "pre_consume_token_quota_failed", http.StatusForbidden)
|
||
}
|
||
err = model.DecreaseUserQuota(relayInfo.UserId, preConsumedQuota)
|
||
if err != nil {
|
||
return 0, 0, service.OpenAIErrorWrapperLocal(err, "decrease_user_quota_failed", http.StatusInternalServerError)
|
||
}
|
||
}
|
||
return preConsumedQuota, userQuota, nil
|
||
}
|
||
|
||
func returnPreConsumedQuota(c *gin.Context, relayInfo *relaycommon.RelayInfo, userQuota int, preConsumedQuota int) {
|
||
if preConsumedQuota != 0 {
|
||
gopool.Go(func() {
|
||
relayInfoCopy := *relayInfo
|
||
|
||
err := service.PostConsumeQuota(&relayInfoCopy, -preConsumedQuota, 0, false)
|
||
if err != nil {
|
||
common.SysError("error return pre-consumed quota: " + err.Error())
|
||
}
|
||
})
|
||
}
|
||
}
|
||
|
||
func postConsumeQuota(ctx *gin.Context, relayInfo *relaycommon.RelayInfo,
|
||
usage *dto.Usage, preConsumedQuota int, userQuota int, priceData helper.PriceData, extraContent string) {
|
||
if usage == nil {
|
||
usage = &dto.Usage{
|
||
PromptTokens: relayInfo.PromptTokens,
|
||
CompletionTokens: 0,
|
||
TotalTokens: relayInfo.PromptTokens,
|
||
}
|
||
extraContent += "(可能是请求出错)"
|
||
}
|
||
useTimeSeconds := time.Now().Unix() - relayInfo.StartTime.Unix()
|
||
promptTokens := usage.PromptTokens
|
||
cacheTokens := usage.PromptTokensDetails.CachedTokens
|
||
imageTokens := usage.PromptTokensDetails.ImageTokens
|
||
audioTokens := usage.PromptTokensDetails.AudioTokens
|
||
completionTokens := usage.CompletionTokens
|
||
modelName := relayInfo.OriginModelName
|
||
|
||
tokenName := ctx.GetString("token_name")
|
||
completionRatio := priceData.CompletionRatio
|
||
cacheRatio := priceData.CacheRatio
|
||
imageRatio := priceData.ImageRatio
|
||
modelRatio := priceData.ModelRatio
|
||
groupRatio := priceData.GroupRatioInfo.GroupRatio
|
||
modelPrice := priceData.ModelPrice
|
||
|
||
// Convert values to decimal for precise calculation
|
||
dPromptTokens := decimal.NewFromInt(int64(promptTokens))
|
||
dCacheTokens := decimal.NewFromInt(int64(cacheTokens))
|
||
dImageTokens := decimal.NewFromInt(int64(imageTokens))
|
||
dAudioTokens := decimal.NewFromInt(int64(audioTokens))
|
||
dCompletionTokens := decimal.NewFromInt(int64(completionTokens))
|
||
dCompletionRatio := decimal.NewFromFloat(completionRatio)
|
||
dCacheRatio := decimal.NewFromFloat(cacheRatio)
|
||
dImageRatio := decimal.NewFromFloat(imageRatio)
|
||
dModelRatio := decimal.NewFromFloat(modelRatio)
|
||
dGroupRatio := decimal.NewFromFloat(groupRatio)
|
||
dModelPrice := decimal.NewFromFloat(modelPrice)
|
||
dQuotaPerUnit := decimal.NewFromFloat(common.QuotaPerUnit)
|
||
|
||
ratio := dModelRatio.Mul(dGroupRatio)
|
||
|
||
// openai web search 工具计费
|
||
var dWebSearchQuota decimal.Decimal
|
||
var webSearchPrice float64
|
||
if relayInfo.ResponsesUsageInfo != nil {
|
||
if webSearchTool, exists := relayInfo.ResponsesUsageInfo.BuiltInTools[dto.BuildInToolWebSearchPreview]; exists && webSearchTool.CallCount > 0 {
|
||
// 计算 web search 调用的配额 (配额 = 价格 * 调用次数 / 1000 * 分组倍率)
|
||
webSearchPrice = operation_setting.GetWebSearchPricePerThousand(modelName, webSearchTool.SearchContextSize)
|
||
dWebSearchQuota = decimal.NewFromFloat(webSearchPrice).
|
||
Mul(decimal.NewFromInt(int64(webSearchTool.CallCount))).
|
||
Div(decimal.NewFromInt(1000)).Mul(dGroupRatio).Mul(dQuotaPerUnit)
|
||
extraContent += fmt.Sprintf("Web Search 调用 %d 次,上下文大小 %s,调用花费 %s",
|
||
webSearchTool.CallCount, webSearchTool.SearchContextSize, dWebSearchQuota.String())
|
||
}
|
||
} else if strings.HasSuffix(modelName, "search-preview") {
|
||
// search-preview 模型不支持 response api
|
||
searchContextSize := ctx.GetString("chat_completion_web_search_context_size")
|
||
if searchContextSize == "" {
|
||
searchContextSize = "medium"
|
||
}
|
||
webSearchPrice = operation_setting.GetWebSearchPricePerThousand(modelName, searchContextSize)
|
||
dWebSearchQuota = decimal.NewFromFloat(webSearchPrice).
|
||
Div(decimal.NewFromInt(1000)).Mul(dGroupRatio).Mul(dQuotaPerUnit)
|
||
extraContent += fmt.Sprintf("Web Search 调用 1 次,上下文大小 %s,调用花费 %s",
|
||
searchContextSize, dWebSearchQuota.String())
|
||
}
|
||
// file search tool 计费
|
||
var dFileSearchQuota decimal.Decimal
|
||
var fileSearchPrice float64
|
||
if relayInfo.ResponsesUsageInfo != nil {
|
||
if fileSearchTool, exists := relayInfo.ResponsesUsageInfo.BuiltInTools[dto.BuildInToolFileSearch]; exists && fileSearchTool.CallCount > 0 {
|
||
fileSearchPrice = operation_setting.GetFileSearchPricePerThousand()
|
||
dFileSearchQuota = decimal.NewFromFloat(fileSearchPrice).
|
||
Mul(decimal.NewFromInt(int64(fileSearchTool.CallCount))).
|
||
Div(decimal.NewFromInt(1000)).Mul(dGroupRatio).Mul(dQuotaPerUnit)
|
||
extraContent += fmt.Sprintf("File Search 调用 %d 次,调用花费 %s",
|
||
fileSearchTool.CallCount, dFileSearchQuota.String())
|
||
}
|
||
}
|
||
|
||
var quotaCalculateDecimal decimal.Decimal
|
||
|
||
var audioInputQuota decimal.Decimal
|
||
var audioInputPrice float64
|
||
if !priceData.UsePrice {
|
||
baseTokens := dPromptTokens
|
||
// 减去 cached tokens
|
||
var cachedTokensWithRatio decimal.Decimal
|
||
if !dCacheTokens.IsZero() {
|
||
baseTokens = baseTokens.Sub(dCacheTokens)
|
||
cachedTokensWithRatio = dCacheTokens.Mul(dCacheRatio)
|
||
}
|
||
|
||
// 减去 image tokens
|
||
var imageTokensWithRatio decimal.Decimal
|
||
if !dImageTokens.IsZero() {
|
||
baseTokens = baseTokens.Sub(dImageTokens)
|
||
imageTokensWithRatio = dImageTokens.Mul(dImageRatio)
|
||
}
|
||
|
||
// 减去 Gemini audio tokens
|
||
if !dAudioTokens.IsZero() {
|
||
audioInputPrice = operation_setting.GetGeminiInputAudioPricePerMillionTokens(modelName)
|
||
if audioInputPrice > 0 {
|
||
// 重新计算 base tokens
|
||
baseTokens = baseTokens.Sub(dAudioTokens)
|
||
audioInputQuota = decimal.NewFromFloat(audioInputPrice).Div(decimal.NewFromInt(1000000)).Mul(dAudioTokens).Mul(dGroupRatio).Mul(dQuotaPerUnit)
|
||
extraContent += fmt.Sprintf("Audio Input 花费 %s", audioInputQuota.String())
|
||
}
|
||
}
|
||
promptQuota := baseTokens.Add(cachedTokensWithRatio).Add(imageTokensWithRatio)
|
||
|
||
completionQuota := dCompletionTokens.Mul(dCompletionRatio)
|
||
|
||
quotaCalculateDecimal = promptQuota.Add(completionQuota).Mul(ratio)
|
||
|
||
if !ratio.IsZero() && quotaCalculateDecimal.LessThanOrEqual(decimal.Zero) {
|
||
quotaCalculateDecimal = decimal.NewFromInt(1)
|
||
}
|
||
} else {
|
||
quotaCalculateDecimal = dModelPrice.Mul(dQuotaPerUnit).Mul(dGroupRatio)
|
||
}
|
||
// 添加 responses tools call 调用的配额
|
||
quotaCalculateDecimal = quotaCalculateDecimal.Add(dWebSearchQuota)
|
||
quotaCalculateDecimal = quotaCalculateDecimal.Add(dFileSearchQuota)
|
||
// 添加 audio input 独立计费
|
||
quotaCalculateDecimal = quotaCalculateDecimal.Add(audioInputQuota)
|
||
|
||
quota := int(quotaCalculateDecimal.Round(0).IntPart())
|
||
totalTokens := promptTokens + completionTokens
|
||
|
||
var logContent string
|
||
if !priceData.UsePrice {
|
||
logContent = fmt.Sprintf("模型倍率 %.2f,补全倍率 %.2f,分组倍率 %.2f", modelRatio, completionRatio, groupRatio)
|
||
} else {
|
||
logContent = fmt.Sprintf("模型价格 %.2f,分组倍率 %.2f", modelPrice, groupRatio)
|
||
}
|
||
|
||
// record all the consume log even if quota is 0
|
||
if totalTokens == 0 {
|
||
// in this case, must be some error happened
|
||
// we cannot just return, because we may have to return the pre-consumed quota
|
||
quota = 0
|
||
logContent += fmt.Sprintf("(可能是上游超时)")
|
||
common.LogError(ctx, fmt.Sprintf("total tokens is 0, cannot consume quota, userId %d, channelId %d, "+
|
||
"tokenId %d, model %s, pre-consumed quota %d", relayInfo.UserId, relayInfo.ChannelId, relayInfo.TokenId, modelName, preConsumedQuota))
|
||
} else {
|
||
model.UpdateUserUsedQuotaAndRequestCount(relayInfo.UserId, quota)
|
||
model.UpdateChannelUsedQuota(relayInfo.ChannelId, quota)
|
||
}
|
||
|
||
quotaDelta := quota - preConsumedQuota
|
||
if quotaDelta != 0 {
|
||
err := service.PostConsumeQuota(relayInfo, quotaDelta, preConsumedQuota, true)
|
||
if err != nil {
|
||
common.LogError(ctx, "error consuming token remain quota: "+err.Error())
|
||
}
|
||
}
|
||
|
||
logModel := modelName
|
||
if strings.HasPrefix(logModel, "gpt-4-gizmo") {
|
||
logModel = "gpt-4-gizmo-*"
|
||
logContent += fmt.Sprintf(",模型 %s", modelName)
|
||
}
|
||
if strings.HasPrefix(logModel, "gpt-4o-gizmo") {
|
||
logModel = "gpt-4o-gizmo-*"
|
||
logContent += fmt.Sprintf(",模型 %s", modelName)
|
||
}
|
||
if extraContent != "" {
|
||
logContent += ", " + extraContent
|
||
}
|
||
other := service.GenerateTextOtherInfo(ctx, relayInfo, modelRatio, groupRatio, completionRatio, cacheTokens, cacheRatio, modelPrice, priceData.GroupRatioInfo.GroupSpecialRatio)
|
||
if imageTokens != 0 {
|
||
other["image"] = true
|
||
other["image_ratio"] = imageRatio
|
||
other["image_output"] = imageTokens
|
||
}
|
||
if !dWebSearchQuota.IsZero() {
|
||
if relayInfo.ResponsesUsageInfo != nil {
|
||
if webSearchTool, exists := relayInfo.ResponsesUsageInfo.BuiltInTools[dto.BuildInToolWebSearchPreview]; exists {
|
||
other["web_search"] = true
|
||
other["web_search_call_count"] = webSearchTool.CallCount
|
||
other["web_search_price"] = webSearchPrice
|
||
}
|
||
} else if strings.HasSuffix(modelName, "search-preview") {
|
||
other["web_search"] = true
|
||
other["web_search_call_count"] = 1
|
||
other["web_search_price"] = webSearchPrice
|
||
}
|
||
}
|
||
if !dFileSearchQuota.IsZero() && relayInfo.ResponsesUsageInfo != nil {
|
||
if fileSearchTool, exists := relayInfo.ResponsesUsageInfo.BuiltInTools[dto.BuildInToolFileSearch]; exists {
|
||
other["file_search"] = true
|
||
other["file_search_call_count"] = fileSearchTool.CallCount
|
||
other["file_search_price"] = fileSearchPrice
|
||
}
|
||
}
|
||
if !audioInputQuota.IsZero() {
|
||
other["audio_input_seperate_price"] = true
|
||
other["audio_input_token_count"] = audioTokens
|
||
other["audio_input_price"] = audioInputPrice
|
||
}
|
||
model.RecordConsumeLog(ctx, relayInfo.UserId, relayInfo.ChannelId, promptTokens, completionTokens, logModel,
|
||
tokenName, quota, logContent, relayInfo.TokenId, userQuota, int(useTimeSeconds), relayInfo.IsStream, relayInfo.Group, other)
|
||
}
|