Merge pull request #1500 from antecanis8/gemini_batchembedcontents

fix: Gemini embedding model only embeds the first text in a batch
This commit is contained in:
Calcium-Ion
2025-08-09 11:42:08 +08:00
committed by GitHub
3 changed files with 43 additions and 31 deletions

View File

@@ -114,7 +114,7 @@ func (a *Adaptor) GetRequestURL(info *relaycommon.RelayInfo) (string, error) {
if strings.HasPrefix(info.UpstreamModelName, "text-embedding") ||
strings.HasPrefix(info.UpstreamModelName, "embedding") ||
strings.HasPrefix(info.UpstreamModelName, "gemini-embedding") {
return fmt.Sprintf("%s/%s/models/%s:embedContent", info.BaseUrl, version, info.UpstreamModelName), nil
return fmt.Sprintf("%s/%s/models/%s:batchEmbedContents", info.BaseUrl, version, info.UpstreamModelName), nil
}
action := "generateContent"
@@ -159,29 +159,35 @@ func (a *Adaptor) ConvertEmbeddingRequest(c *gin.Context, info *relaycommon.Rela
if len(inputs) == 0 {
return nil, errors.New("input is empty")
}
// only process the first input
geminiRequest := dto.GeminiEmbeddingRequest{
Content: dto.GeminiChatContent{
Parts: []dto.GeminiPart{
{
Text: inputs[0],
// process all inputs
geminiRequests := make([]map[string]interface{}, 0, len(inputs))
for _, input := range inputs {
geminiRequest := map[string]interface{}{
"model": fmt.Sprintf("models/%s", info.UpstreamModelName),
"content": dto.GeminiChatContent{
Parts: []dto.GeminiPart{
{
Text: input,
},
},
},
},
}
// set specific parameters for different models
// https://ai.google.dev/api/embeddings?hl=zh-cn#method:-models.embedcontent
switch info.UpstreamModelName {
case "text-embedding-004":
// except embedding-001 supports setting `OutputDimensionality`
if request.Dimensions > 0 {
geminiRequest.OutputDimensionality = request.Dimensions
}
// set specific parameters for different models
// https://ai.google.dev/api/embeddings?hl=zh-cn#method:-models.embedcontent
switch info.UpstreamModelName {
case "text-embedding-004","gemini-embedding-exp-03-07","gemini-embedding-001":
// Only newer models introduced after 2024 support OutputDimensionality
if request.Dimensions > 0 {
geminiRequest["outputDimensionality"] = request.Dimensions
}
}
geminiRequests = append(geminiRequests, geminiRequest)
}
return geminiRequest, nil
return map[string]interface{}{
"requests": geminiRequests,
}, nil
}
func (a *Adaptor) ConvertOpenAIResponsesRequest(c *gin.Context, info *relaycommon.RelayInfo, request dto.OpenAIResponsesRequest) (any, error) {

View File

@@ -1071,7 +1071,7 @@ func GeminiEmbeddingHandler(c *gin.Context, info *relaycommon.RelayInfo, resp *h
return nil, types.NewOpenAIError(readErr, types.ErrorCodeBadResponseBody, http.StatusInternalServerError)
}
var geminiResponse dto.GeminiEmbeddingResponse
var geminiResponse dto.GeminiBatchEmbeddingResponse
if jsonErr := common.Unmarshal(responseBody, &geminiResponse); jsonErr != nil {
return nil, types.NewOpenAIError(jsonErr, types.ErrorCodeBadResponseBody, http.StatusInternalServerError)
}
@@ -1079,14 +1079,16 @@ func GeminiEmbeddingHandler(c *gin.Context, info *relaycommon.RelayInfo, resp *h
// convert to openai format response
openAIResponse := dto.OpenAIEmbeddingResponse{
Object: "list",
Data: []dto.OpenAIEmbeddingResponseItem{
{
Object: "embedding",
Embedding: geminiResponse.Embedding.Values,
Index: 0,
},
},
Model: info.UpstreamModelName,
Data: make([]dto.OpenAIEmbeddingResponseItem, 0, len(geminiResponse.Embeddings)),
Model: info.UpstreamModelName,
}
for i, embedding := range geminiResponse.Embeddings {
openAIResponse.Data = append(openAIResponse.Data, dto.OpenAIEmbeddingResponseItem{
Object: "embedding",
Embedding: embedding.Values,
Index: i,
})
}
// calculate usage